Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 268(Pt 1): 131655, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636763

RESUMO

This research aims to develop guided tissue regeneration (GTR) membranes from bacterial cellulose (BC), a natural polysaccharide-based biopolymer. A double-layered BC composite membrane was prepared by coating the BC membrane with mixed carboxymethyl cellulose/poly(ethylene oxide) (CMC/PEO) fibers via electrospinning. The CMC/PEO-BC membranes were then characterized for their chemical and physical characteristics. The 8 % (wt/v) CMC/PEO (1:1) aqueous solution yielded well-defined electrospun CMC/PEO nanofibers (125 ± 10 nm) without beads. The CMC/PEO-BC membranes exhibited good mechanical and swelling properties as well as good cytocompatibility against human periodontal ligament cells (hPDLs). Its functionalizability via carboxyl entities in CMC was tested using the calcium-binding domain of plant-derived recombinant human osteopontin (p-rhOPN-C122). As evaluated by enzyme-linked immunosorbent assay, a 98-99 % immobilization efficiency was achieved in a concentration-dependent manner over an applied p-rhOPN-C122 concentration range of 7.5-30 ng/mL. The biological function of the membrane was assessed by determining the expression levels of osteogenic-related gene transcripts using quantitative real-time reverse-transcriptase polymerase chain reaction. Mineralization assay indicated that the p-rhOPN-C122 immobilized CMC/PEO-BC membrane promoted hPDLs osteogenic differentiation. These results suggested that the developed membrane could serve as a promising GTR membrane for application in bone tissue regeneration.

2.
Hum Vaccin Immunother ; 20(1): 2327142, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38508690

RESUMO

Respiratory syncytial virus (RSV) is a highly contagious virus that affects the lungs and respiratory passages of many vulnerable people. It is a leading cause of lower respiratory tract infections and clinical complications, particularly among infants and elderly. It can develop into serious complications such as pneumonia and bronchiolitis. The development of RSV vaccine or immunoprophylaxis remains highly active and a global health priority. Currently, GSK's Arexvy™ vaccine is approved for the prevention of lower respiratory tract disease in older adults (>60 years). Palivizumab and currently nirsevimab are the approved monoclonal antibodies (mAbs) for RSV prevention in high-risk patients. Many studies are ongoing to develop additional therapeutic antibodies for preventing RSV infections among newborns and other susceptible groups. Recently, additional antibodies have been discovered and shown greater potential for development as therapeutic alternatives to palivizumab and nirsevimab. Plant expression platforms have proven successful in producing recombinant proteins, including antibodies, offering a potential cost-effective alternative to mammalian expression platforms. Hence in this study, an attempt was made to use a plant expression platform to produce two anti-RSV fusion (F) mAbs 5C4 and CR9501. The heavy-chain and light-chain sequences of both these antibodies were transiently expressed in Nicotiana benthamiana plants using a geminiviral vector and then purified using single-step protein A affinity column chromatography. Both these plant-produced mAbs showed specific binding to the RSV fusion protein and demonstrate effective viral neutralization activity in vitro. These preliminary findings suggest that plant-produced anti-RSV mAbs are able to neutralize RSV in vitro.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Lactente , Animais , Humanos , Recém-Nascido , Idoso , Palivizumab/uso terapêutico , Tabaco/genética , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais , Anticorpos Neutralizantes , Proteínas Virais de Fusão/genética , Mamíferos/metabolismo
3.
Hum Vaccin Immunother ; 20(1): 2329446, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38525945

RESUMO

Botulism is a fatal neurologic disease caused by the botulinum toxin (BoNT) produced by Clostridium botulinum. It is a rare but highly toxic disease with symptoms, such as cramps, nausea, vomiting, diarrhea, dysphagia, respiratory failure, muscle weakness, and even death. Currently, two types of antitoxin are used: equine-derived heptavalent antitoxin and human-derived immunoglobulin (BabyBIG®). However, heptavalent treatment may result in hypersensitivity, whereas BabyBIG®, has a low yield. The present study focused on the development of three anti-BoNT monoclonal antibodies (mAbs), 1B18, C25, and M2, in Nicotiana benthamiana. The plant-expressed mAbs were purified and examined for size, purity and integrity by SDS-PAGE, western blotting and size-exclusion chromatography. Analysis showed that plant-produced anti-BoNT mAbs can fully assemble in plants, can be purified in a single purification step, and mostly remain as monomeric proteins. The efficiency of anti-BoNT mAbs binding to BoNT/A and B was then tested. Plant-produced 1B18 retained its ability to recognize both mBoNT/A1 and ciBoNT/B1. At the same time, the binding specificities of two other mAbs were determined: C25 for mBoNT/A1 and M2 for ciBoNT/B1. In conclusion, our results confirm the use of plants as an alternative platform for the production of anti-BoNT mAbs. This plant-based technology will serve as a versatile system for the development botulism immunotherapeutics.


Assuntos
Antitoxinas , Toxinas Botulínicas Tipo A , Botulismo , Animais , Cavalos , Humanos , Botulismo/prevenção & controle , Tabaco , Anticorpos Monoclonais
4.
Planta Med ; 90(4): 305-315, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373705

RESUMO

Checkpoint blockade immunotherapy has revolutionized cancer treatment, with monoclonal antibodies targeting immune checkpoints, yielding promising clinical benefits. However, with the advent of resistance to immune checkpoint inhibitor treatment in clinical trials, developing next-generation antibodies with potentially increased efficacy is critical. Here, we aimed to generate a recombinant bispecific monoclonal antibody for dual inhibition of programmed cell death protein 1/programmed cell death ligand 1 and cytotoxic T-lymphocyte-associated protein 4 axes. The plant system was used as an alternative platform for bispecific monoclonal antibody production. Dual variable domain immunoglobulin atezolizumab × 2C8 is a plant-derived bispecific monoclonal antibody that combines both programmed cell death ligand 1 and cytotoxic T-lymphocyte-associated protein 4 blockade into a single molecule. Dual variable domain immunoglobulin atezolizumab × 2C8 was transiently expressed in Nicotiana benthamiana and the expression level was determined to be the highest after 4 days of infiltration. The size and assembly of the purified bispecific monoclonal antibody were determined, and its function was investigated in vitro and in vivo. The molecular structures of plant-produced dual variable domain immunoglobulin atezolizumab × 2C8 are as expected, and it was mostly present as a monomer. The plant-produced dual variable domain immunoglobulin atezolizumab × 2C8 showed in vitro binding to programmed cell death ligand 1 and cytotoxic T-lymphocyte-associated protein 4 proteins. The antitumor activity of plant-produced bispecific monoclonal antibody was tested in vivo by treating humanized Balb/c mice bearing a CT26 colorectal tumor. Plant-produced dual variable domain immunoglobulin atezolizumab × 2C8 significantly inhibited tumor growth by reducing tumor volume and weight. Body weight changes indicated that the plant-produced bispecific monoclonal antibody was safe and tolerable. Overall, this proof of concept study demonstrated the viability of plants to produce functional plant-based bispecific immunotherapy.


Assuntos
Anticorpos Biespecíficos , Neoplasias Colorretais , Neoplasias , Camundongos , Animais , Antígeno CTLA-4/uso terapêutico , Antígeno B7-H1/uso terapêutico , Ligantes , Neoplasias/tratamento farmacológico , Anticorpos Monoclonais/farmacologia , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico
5.
Biotechnol Rep (Amst) ; 41: e00826, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38234330

RESUMO

Respiratory syncytial virus (RSV) is a highly infectious respiratory virus that causes serious illness, particularly in young children, elderly people, and those with immunocompromised individuals. RSV infection is the leading cause of infant hospitalization and can lead to serious complications such as pneumonia and bronchiolitis. Currently, there is an RSV vaccine approved exclusively for the elderly population, but no approved vaccine specifically designed for infants or any other age groups. Therefore, it is crucial to continue the development of an RSV vaccine specifically tailored for these populations. In this study, the immunogenicity of the two plant-produced RSV-F Fc fusion proteins (Native construct and structural stabilized construct) were examined to assess them as potential vaccine candidates for RSV. The RSV-F Fc fusion proteins were transiently expressed in Nicotiana benthamiana and purified using protein A affinity column chromatography. The recombinant RSV-F Fc fusion protein was recognized by the monoclonal antibody Motavizumab specific against RSV-F protein. Moreover, the immunogenicity of the two purified RSV-F Fc proteins were evaluated in mice by formulating with different adjuvants. According to our results, the plant-produced RSV-F Fc fusion protein is immunogenic in mice. These preliminary findings, demonstrate the immunogenicity of plant-based RSV-F Fc fusion protein, however, further preclinical studies such as antigen dose and adjuvant optimization, safety, toxicity, and challenge studies in animal models are necessary in order to prove the vaccine efficacy.

6.
Front Plant Sci ; 14: 1149455, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711295

RESUMO

Cytotoxic T lymphocyte-associated protein 4 (CTLA-4) is an immune checkpoint regulator exclusively expressed on T cells that obstructs the cell's effector functions. Ipilimumab (Yervoy®), a CTLA-4 blocking antibody, emerged as a notable breakthrough in modern cancer treatment, showing upfront clinical benefits in multiple carcinomas. However, the exhilarating cost of checkpoint blockade therapy is discouraging and even utmost prominent in developing countries. Thereby, affordability of cancer care has become a point of emphasis in drug development pipelines. Plant expression system blossomed as a cutting-edge platform for rapid, facile to scale-up, and economical production of recombinant therapeutics. Here, we describe the production of an anti-CTLA-4 2C8 antibody in Nicotiana benthamiana. ELISA and bio-layer interferometry were used to analyze antigen binding and binding kinetics. Anticancer responses in vivo were evaluated using knocked-in mice implanted with syngeneic colon tumor. At 4 days post-infiltration, the antibody was transiently expressed in plants with yields of up to 39.65 ± 8.42 µg/g fresh weight. Plant-produced 2C8 binds to both human and murine CTLA-4, and the plant-produced IgG1 also binds to human FcγRIIIa (V158). In addition, the plant-produced 2C8 monoclonal antibody is as effective as Yervoy® in inhibiting tumor growth in vivo. In conclusion, our study underlines the applicability of plant platform to produce functional therapeutic antibodies with promising potential in cancer immunotherapy.

7.
Vaccines (Basel) ; 11(8)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37631945

RESUMO

Rabies encephalitis is a fatal zoonotic viral disease caused by the neurotropic rabies virus. It remains a major public health concern as it causes almost 100% fatality and has no effective medication after the onset of the disease. However, this illness is preventable with the timely administration of effective post-exposure prophylaxis (PEP) consisting of the rabies vaccine and passive immune globulins (HRIG and ERIG). Recently, conventional PEP has been shown to have many limitations, resulting in little support for these expensive and heterologous globulins. Monoclonal antibody (mAb) production via recombinant technology in animal and human cell cultures, as well as a plant-based platform, was introduced to overcome the costly and high-tech constraints of former preparations. We used transient expression technology to produce two mAbs against the rabies virus in Nicotiana benthamiana and compared their viral neutralizing activity in vitro and in vivo. The expression levels of selective mAbs E559 and 62-71-3 in plants were estimated to be 17.3 mg/kg and 28.6 mg/kg in fresh weight, respectively. The plant-produced mAbs effectively neutralized the challenge virus CVS-11 strain in a cell-based RFFIT. In addition, the combination of these two mAbs in a cocktail protected hamsters from rabies virus infection more effectively than standard HRIG and ERIG. This study suggests that the plant-produced rabies antibody cocktail has promising potential as an alternative biological to polyclonal RIG in rabies PEP.

9.
Sci Rep ; 13(1): 14146, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644118

RESUMO

Immune checkpoint inhibitors are a well-known class of immunotherapeutic drugs that have been used for effective treatment of several cancers. Atezolizumab (Tecentriq) was the first antibody to target immune checkpoint PD-L1 and is now among the most commonly used anticancer therapies. However, this anti-PD-L1 antibody is produced in mammalian cells with high manufacturing costs, limiting cancer patients' access to the antibody treatment. Plant expression system is another platform that can be utilized, as they can synthesize complex glycoproteins, are rapidly scalable, and relatively cost-efficient. Herein, Atezolizumab was transiently produced in Nicotiana benthamiana and demonstrated high expression level within 4-6 days post-infiltration. After purification by affinity chromatography, the purified plant-produced Atezolizumab was compared to Tecentriq and showed the absence of glycosylation. Furthermore, the plant-produced Atezolizumab could bind to PD-L1 with comparable affinity to Tecentriq in ELISA. The tumor growth inhibitory activity of plant-produced Atezolizumab in mice was also found to be similar to that of Tecentriq. These findings confirm the plant's capability to serve as an efficient production platform for immunotherapeutic antibodies and suggest that it could be used to alleviate the cost of existing anticancer products.


Assuntos
Anticorpos Monoclonais Humanizados , Animais , Camundongos , Anticorpos Monoclonais Humanizados/farmacologia , Ensaio de Imunoadsorção Enzimática , Imunoterapia , Mamíferos
10.
Sci Rep ; 13(1): 11927, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488213

RESUMO

As a response to invasion by pathogens, the secretion of interleukin 6 (IL-6) which is a cytokine, activates IL-6/JAKs/STAT3 intracellular signaling via., phosphorylation. Over expression of pSTAT3 induces IL-6 positive feedback loop causing cytokine release syndrome or cytokine storm. Plants have gained momentum as an alternative expression system. Hence, this study aims to produce mAb targeting human IL-6 receptor (hIL-6R) in Nicotiana benthamiana for down regulating its cellular signaling thus, decreasing the expression of pSTAT3. The variable regions of heavy and light chains of anti-hIL-6R mAb were constructed in pBYK2e geminiviral plant expression vector and transiently co-expressed in N. benthamiana. The results demonstrate the proper protein assembly of anti-hIL-6R mAb with highest expression level of 2.24 mg/g FW at 5 dpi, with a yield of 21.4 µg/g FW after purification. The purity and N-glycosylation of plant produced antibody was analyzed, including its specificity to human IL-6 receptor by ELISA. Additionally, we investigated the effect to pSTAT3 expression in human PBMC's by flow cytometry wherein, the results confirmed lower expression of pSTAT3 with increasing concentrations of plant produced anti-hIL-6R mAb. Although, further in vivo studies are key to unveil the absolute functionality of anti-hIL-6R, we hereby show the potential of the plant platform and its suitability for the production of this therapeutic antibody.


Assuntos
Interleucina-6 , Leucócitos Mononucleares , Humanos , Anticorpos , Citocinas , Síndrome da Liberação de Citocina
11.
Planta Med ; 89(10): 1010-1020, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37072112

RESUMO

Recombinant proteins are a major breakthrough in biomedical research with a wide range of applications from diagnostics to therapeutics. Strategic construct design, consistent expression platforms, and suitable upstream and downstream techniques are key considerations to produce commercially viable recombinant proteins. The recombinant antigenic protein production for use either as a diagnostic reagent or subunit vaccine formulation is usually carried out in prokaryotic or eukaryotic expression platforms. Microbial and mammalian systems dominate the biopharmaceutical industry for such applications. However, there is no universal expression system that can meet all the requirements for different types of proteins. The adoptability of any expression system is likely based on the quality and quantity of the proteins that can be produced from it. The huge demand of recombinant proteins for different applications requires an inexpensive production platform for rapid development. The molecular farming scientific community has been promoting the plant system for nearly 3 decades as a cost-effective alternative to produce high-quality proteins for research, diagnostic, and therapeutic applications. Here, we discuss how plant biotechnology could offer solutions for the rapid and scalable production of protein antigens as low-cost diagnostic reagents for use in functional assays.


Assuntos
Doenças Transmissíveis , Agricultura Molecular , Animais , Plantas Geneticamente Modificadas/metabolismo , Biotecnologia/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Doenças Transmissíveis/diagnóstico , Mamíferos/metabolismo
12.
Biotechnol Rep (Amst) ; 38: e00794, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37064962

RESUMO

The therapeutic blockade of inhibitory PD-1 signaling has emerged as an effective approach for cancer immunotherapy. Nivolumab (Opdivo®), a monoclonal antibody (mAb) targeting the PD-1 immune checkpoint, is approved for treatment of several cancer indications. It functions by blocking the PD-1-mediated T-cell inhibition thus reinstating anticancer immune responses. Tremendous advances in plant biotechnology offer an alternative and economical strategy to produce therapeutic mAbs for immune-based therapies. In this study, recombinant anti-PD-1 Nivolumab was produced in Nicotiana benthamiana and the plant-produced anti-PD-1 mAb was exploited for cancer treatment in syngeneic mice model C57BL/6 mice that were used to test the antitumor efficacy of plant produced Nivolumab, along with commercial Opdivo®. C57BL/6 syngeneic mice treated with plant produced anti-PD-1 mAb exhibited reduction in the growth of established MC38 tumors. The plant produced Nivolumab treatment showed 82.9% antitumor effect in decreasing the tumor volume along with 50% tumor-free mice, whereas Opdivo® showed 90.26% reduction in volume without any tumor-free mice. Finally, plant-derived anti-PD-1 therapy was also well tolerated in tumor-bearing mice that correlated with no significant body weight changes. Overall, our plant-produced Nivolumab elicits significant inhibition of tumor growth in vivo and provides a proof-of-concept for the production of immunotherapy targeting PD-1.

13.
Biotechnol Rep (Amst) ; 38: e00796, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37056791

RESUMO

Detecting immunity against SARS-CoV-2 is vital for evaluating vaccine response and natural infection, but conventional virus neutralization test (cVNT) requires BSL3 and live viruses, and pseudo-virus neutralization test (pVNT) needs specialized equipment and trained professionals. The surrogate virus neutralization test (sVNT) was developed to overcome these limitations. This study explored the use of angiotensin converting enzyme 2 (ACE2) produced from Nicotiana benthamiana for the development of an affordable neutralizing antibodies detection assay. The results showed that the plant-produced ACE2 can bind to the receptor binding domain (RBD) of the SARS-CoV-2, and was used to develop sVNT with plant-produced RBD protein. The sVNT developed using plant-produced proteins showed high sensitivity and specificity when validated with a group of 30 RBD vaccinated mice sera and the results were correlated with cVNT titer. This preliminary finding suggests that the plants could offer a cost-effective platform for producing diagnostic reagents.

14.
SLAS Technol ; 28(4): 278-291, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36966988

RESUMO

Epidermal growth factor (EGF) is a known signaling cue essential towards the development and organoid biofabrication particularly for exocrine glands. This study developed an in vitro EGF delivery platform with Nicotiana benthamiana plant-produced EGF (P-EGF) encapsulated on hyaluronic acid/alginate (HA/Alg) hydrogel to improve the effectiveness of glandular organoid biofabrication in short-term culture systems. Primary submandibular gland epithelial cells were treated with 5 - 20 ng/mL of P-EGF and commercially available bacteria-derived EGF (B-EGF). Cell proliferation and metabolic activity were measured by MTT and luciferase-based ATP assays. P-EGF and B-EGF 5 - 20 ng/mL promoted glandular epithelial cell proliferation during 6 culture days on a comparable fashion. Organoid forming efficiency and cellular viability, ATP-dependent activity and expansion were evaluated using two EGF delivery systems, HA/Alg-based encapsulation and media supplementation. Phosphate buffered saline (PBS) was used as a control vehicle. Epithelial organoids fabricated from PBS-, B-EGF-, and P-EGF-encapsulated hydrogels were characterized genotypically, phenotypically and by functional assays. P-EGF-encapsulated hydrogel enhanced organoid formation efficiency and cellular viability and metabolism relative to P-EGF supplementation. At culture day 3, epithelial organoids developed from P-EGF-encapsulated HA/Alg platform contained functional cell clusters expressing specific glandular epithelial markers such as exocrine pro-acinar (AQP5, NKCC1, CHRM1, CHRM3, Mist1), ductal (K18, Krt19), and myoepithelial (α-SMA, Acta2), and possessed a high mitotic activity (38-62% Ki67 cells) with a large epithelial progenitor population (∼70% K14 cells). The P-EGF encapsulation strikingly upregulated the expression of pro-acinar AQP5 cells through culture time when compared to others (B-EGF, PBS). Thus, the utilization of Nicotiana benthamiana in molecular farming can produce EGF biologicals amenable to encapsulation in HA/Alg-based in vitro platforms, which can effectively and promptly induce the biofabrication of exocrine gland organoids.


Assuntos
Fator de Crescimento Epidérmico , Hidrogéis , Fator de Crescimento Epidérmico/farmacologia , Agricultura Molecular , Organoides , Ácido Hialurônico/farmacologia , Trifosfato de Adenosina
15.
Vaccine ; 41(17): 2781-2792, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36963999

RESUMO

Cost-effective, and accessible vaccines are needed for mass immunization to control the ongoing coronavirus disease 2019 (COVID-19), especially in low- and middle-income countries (LMIC).A plant-based vaccine is an attractive technology platform since the recombinant proteins can be easily produced at large scale and low cost. For the recombinant subunit-based vaccines, effective adjuvants are crucial to enhance the magnitude and breadth of immune responses elicited by the vaccine. In this study, we report a preclinical evaluation of the immunogenicity, efficacy and safety of a recombinant plant-based SARS-CoV-2 RBD vaccine formulated with 3M-052 (TLR7/8 agonist)-Alum adjuvant. This vaccine formulation, named Baiya SARS-CoV-2 Vax 2, induced significant levels of RBD-specific IgG and neutralizing antibody responses in mice. A viral challenge study using humanized K18-hACE2 mice has shown that animals vaccinated with two doses of Baiya SARS-CoV-2 Vax 2 established immune protection against SARS-CoV-2. A study in nonhuman primates (cynomolgus monkeys) indicated that immunization with two doses of Baiya SARS-CoV-2 Vax 2 was safe, well tolerated, and induced neutralizing antibodies against the prototype virus and other viral variants (Alpha, Beta, Gamma, Delta, and Omicron subvariants). The toxicity of Baiya SARS-CoV-2 Vax 2 was further investigated in Jcl:SD rats, which demonstrated that a single dose and repeated doses of Baiya SARS-CoV-2 Vax 2 were well tolerated and no mortality or unanticipated findings were observed. Overall, these preclinical findings support further clinical development of Baiya SARS-CoV-2 Vax 2.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Ratos , Ratos Sprague-Dawley , COVID-19/prevenção & controle , Hidróxido de Alumínio , Adjuvantes Imunológicos , Anticorpos Neutralizantes , Macaca fascicularis , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus/genética , Imunogenicidade da Vacina
16.
Talanta ; 251: 123783, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35977451

RESUMO

The current approaches of diagnostic platforms for detecting SARS-CoV-2 infections mostly relied on adapting the existing technology. In this work, a simple and low-cost electrochemical sensing platform for detecting SAR-CoV-2 antigen was established. The proposed sensor combined the innovative disposable paper-based immunosensor and cost-effective plant-based anti-SARS-CoV-2 monoclonal antibody CR3022, expressed in Nicotiana benthamiana. The cellulose nanocrystal was modified on screen-printed graphene electrode to provide the abundant COOH functional groups on electrode surface, leading to the high ability for antibody immobilization. The quantification of the presence receptor binding domain (RBD) spike protein of SARS-CoV-2 was performed using differential pulse voltammetry by monitoring the changing current of [Fe(CN)6]3-/4- redox solution. The current change of [Fe(CN)6]3-/4- before and after the presence of target RBD could be clearly distinguished, providing a linear relationship with RBD concentration in the range from 0.1 pg/mL to 500 ng/mL with the minimum limit of detection of 2.0 fg/mL. The proposed platform was successfully applied to detect RBD in nasopharyngeal swab samples with satisfactory results. Furthermore, the paper-based immunosensor was extended to quantify the RBD level in spiked saliva samples, demonstrating the broadly applicability of this system. This electrochemical paper-based immunosensor has the potential to be employed as a point-of-care testing for COVID-19 diagnosis.


Assuntos
Técnicas Biossensoriais , COVID-19 , Grafite , Anticorpos Monoclonais/química , Anticorpos Neutralizantes , Anticorpos Antivirais , Técnicas Biossensoriais/métodos , COVID-19/diagnóstico , Teste para COVID-19 , Celulose , Técnicas Eletroquímicas/métodos , Grafite/química , Humanos , Imunoensaio/métodos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
17.
Biotechnol Rep (Amst) ; 37: e00779, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36533163

RESUMO

SARS-CoV-2 causes devastating impact on the human population and has become a major public health concern. The frequent emergence of SARS-CoV-2 variants of concern urges the development of safe and efficacious vaccine against SARS-CoV-2 variants. We developed a candidate vaccine Baiya SARS-CoV-2 Vax 1, based on SARS-CoV-2 receptor-binding domain (RBD) by fusing with the Fc region of human IgG. The RBD-Fc fusion was produced in Nicotiana benthamiana. Previously, we reported that this plant-produced vaccine is effective in inducing immune response in both mice and non-human primates. Here, the efficacy of our vaccine candidate was tested in Syrian hamster challenge model. Hamsters immunized with two intramuscular doses of Baiya SARS-CoV-2 Vax 1 induced neutralizing antibodies against SARS-CoV-2 and protected from SARS-CoV-2 challenge with reduced viral load in the lungs. These preliminary results demonstrate the ability of plant-produced subunit vaccine Baiya SARS-CoV-2 Vax 1 to provide protection against SARS-CoV-2 infection in hamsters.

18.
Front Plant Sci ; 13: 1012583, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531354

RESUMO

Omalizumab, the anti-immunoglobulin IgE antibody is the only approved and available monoclonal antibody as an auxiliary medicament for the severe respiratory allergic reactions. It forms small size immune complexes by binding to free IgE, thereby inhibiting the interaction of IgE with its receptors. Additionally, the anti-IgE can also differently shape the airflow by impeding the stimulation of IgE receptors present on structural cells in the respiratory tract. The present study aimed to use plants as an expression system for anti-human IgE antibody production, using Nicotiana benthamiana as hosts. Recombinant Agrobacterium tumefaciens containing heavy chain (HC) and light chain (LC) domains of anti-human IgE were co-transformed in N. benthamiana. The assembling of the antibody and its expression was detected by SDS-PAGE and Western blot analysis. The functional ability of the anti-IgE antibody was determined via its binding capacity with target IgE by ELISA and the inhibition of basophil activation. The anti-human IgE mAb generated in plants was shown to be effective in binding to its target IgE and inhibit the IgE-crosslink in RS-ATL8 reporter cells. Although, antibody yield and purification process have to be further optimized, this study demonstrates the use of plant expression system as a promising platform for the production of Omalizumab which showed a comparable in vitro function to that of commercial Omalizumab (Xolair) in the inhibition of basophil activation.

19.
Vaccines (Basel) ; 10(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36560473

RESUMO

Cervical cancer is the most common gynecological malignant tumor worldwide, and it remains a major health problem among women, especially in developing countries. Despite the significant research efforts employed for tumor prevention, cervical cancer ranks as the leading cause of cancer death. Human papillomavirus (HPV) is the most important risk factor for cervical cancer. Cervical cancer is a preventable disease, for which early detection could increase survival rates. Immunotherapies represent a promising approach in the treatment of cancer, and several potential candidates are in clinical trials, while some are available in the market. However, equal access to available HPV vaccines is limited due to their high cost, which remains a global challenge for cervical cancer prevention. The implementation of screening programs, disease control systems, and medical advancement in developed countries reduce the serious complications associated with the disease somewhat; however, the incidence and prevalence of cervical cancer in low-income and middle-income countries continues to gradually increase, making it the leading cause of mortality, largely due to the unaffordable and inaccessible anti-cancer therapeutic options. In recent years, plants have been considered as a cost-effective production system for the development of vaccines, therapeutics, and other biopharmaceuticals. Several proof-of-concept studies showed the possibility of producing recombinant biopharmaceuticals for cancer immunotherapy in a plant platform. This review summarizes the current knowledge and therapeutic options for the prevention of cervical cancer and discusses the potential of the plant expression platform to produce affordable HPV vaccines.

20.
PLoS One ; 17(11): e0274737, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36367857

RESUMO

Immune checkpoint antibodies in cancer treatment are receptor-ligand pairs that modulate cancer immunity. PD-1/PD-L1 pathway has emerged as one of the major targets in cancer immunotherapy. Atezolizumab, the first anti-PD-L1 antibody approved for the treatment of metastatic urothelial, non-small cell lung, small cell lung and triple-negative breast cancers, is produced in Chinese Hamster Ovary (CHO) cells with several limitations i.e., high-production costs, low-capacity yields, and contamination risks. Due to the rapid scalability and low production costs, the transient expression in Nicotiana benthamiana leaves was investigated by co-infiltration of Agrobacterium tumefaciens GV3101 cultures harboring the nucleic acid sequences encoding for Atezolizumab heavy chain and light chain in this study. The transient expression of Atezolizumab in transformed N. benthamiana accumulated up to 86.76 µg/g fresh leaf weight after 6 days of agroinfiltration (OD 600 nm: 0.4) with 1:1 ratio of heavy chain to light chain. The structural and functional characteristics of plant-produced Atezolizumab was compared with commercially available Tecentriq® from CHO cells with similar binding efficacies to PD-L1 receptor. The direct anti-cancer effect of plant-produced anti-PD-L1 was further performed in human lung metastatic cancer cells H460 cultured under detachment condition, demonstrating the activity of anti-PD-L1-antibody on sensitizing anoikis as well as the suppression on anti-apoptosis proteins (Bcl-2 and Mcl-1) and modulation of epithelial to mesenchymal regulating proteins (E-cadherin, N-cadherin, Snail and Slug). In conclusion, this study manifests plants as an alternative cost-effective platform for the production of functional monoclonal antibodies for use in cancer therapy.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Pulmonares , Cricetinae , Animais , Humanos , Células CHO , Anoikis , Cricetulus , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias Pulmonares/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...